Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling
نویسندگان
چکیده
The CUR matrix decomposition and the Nyström approximation are two important lowrank matrix approximation techniques. The Nyström method approximates a symmetric positive semidefinite matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix by a small number of its columns and rows. Thus, CUR decomposition can be regarded as an extension of the Nyström approximation. In this paper we establish a more general error bound for the adaptive column/row sampling algorithm, based on which we propose more accurate CUR and Nyström algorithms with expected relative-error bounds. The proposed CUR and Nyström algorithms also have low time complexity and can avoid maintaining the whole data matrix in RAM. In addition, we give theoretical analysis for the lower error bounds of the standard Nyström method and the ensemble Nyström method. The main theoretical results established in this paper are novel, and our analysis makes no special assumption on the data matrices.
منابع مشابه
Improving CUR Matrix Decomposition and Nyström Approximation via Adaptive Sampling
The CUR matrix decomposition and Nyström method are two important low-rank matrix approximation techniques. The Nyström method approximates a positive semidefinite matrix in terms of a small number of its columns, while CUR approximates an arbitrary data matrix by a small number of its columns and rows. Thus, the CUR decomposition can be regarded as an extension of the Nyström method. In this p...
متن کاملA Simple Approach to Optimal CUR Decomposition
Prior optimal CUR decomposition and near optimal column reconstruction methods have been established by combining BSS sampling and adaptive sampling. In this paper, we propose a new approach to the optimal CUR decomposition and near optimal column reconstruction by just using leverage score sampling. In our approach, both the BSS sampling and adaptive sampling are not needed. Moreover, our appr...
متن کاملHashing with Generalized Nyström Approximation
Hashing, which involves learning binary codes to embed high-dimensional data into a similarity-preserving low-dimensional Hamming space, is often formulated as linear dimensionality reduction followed by binary quantization. Linear dimensionality reduction, based on maximum variance formulation, requires leading eigenvectors of data covariance or graph Laplacian matrix. Computing leading singul...
متن کاملTowards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition
Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The standard sketch based method, which we call the prototype model, produces relatively accurate approximations, but is inefficient on large square matrices. The Nyström method is highly efficient, but can only achieve low a...
متن کاملA Scalable CUR Matrix Decomposition Algorithm: Lower Time Complexity and Tighter Bound
The CUR matrix decomposition is an important extension of Nyström approximation to a general matrix. It approximates any data matrix in terms of a small number of its columns and rows. In this paper we propose a novel randomized CUR algorithm with an expected relative-error bound. The proposed algorithm has the advantages over the existing relative-error CUR algorithms that it possesses tighter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 14 شماره
صفحات -
تاریخ انتشار 2013